联系电话:
13581588593
飞机结构的疲劳
疲劳是指在低于材料极限强度(ultimate strength)的应力(stress)长期反复作用下,导致结构终于破坏的一种现象。由于总是发生在结构应力远低于设计容许Zui大应力的情况下,因此常能躲过一般人的注意而不被发觉,这也是疲劳比较危险的地方。
材料在承受反复应力的作用过程中,每一次的应力作用称为一个应力周期(cycle),此周期内的材料受力状态,由原本的无应力先到达Zui大正应力(拉伸应力),然后到达Zui大负应力(压缩应力)zui后回到无应力状态。在此受力过程中,每一个应力周期所经历的时间长短(即︰频率)与疲劳关系甚微,应力周期的振幅及累积次数才是决定疲劳破坏发生的时机;另外,压缩应力不会造成疲劳破坏,拉伸应力才是疲劳破坏的主因。
疲劳破坏大致分为两类︰低周期疲劳(low cycle fatigue)及高周期疲劳(high cycle fatigue)。一般而言,发生疲劳破坏时的应力周期次数少于十万次者,称为低周期疲劳;高于此次数者,称为高周期疲劳。低周期疲劳的作用应力较大,经常伴随着结构的永久塑性变形(plastic deformation);高周期疲劳的作用应力较小,结构变形通常维持在弹性(elastic)范围内,所以不致有永久变形。
材料疲劳破坏的进程分为三阶段︰裂纹初始(crack initiation)、裂纹成长(crack growth)、强制破坏(rupture)。材料表面瑕疵或是几何形状不连续处,材料晶格(lattice)在外力作用下沿结晶面(crystallography plane)相互滑移(slip),形成不可逆的差排(dislocation)移动,在张力及压力交替作用下,于材料表面形成外凸(extrusion)及内凹(intrusion),造成初始裂纹。这些初始裂纹在多次应力周期的拉伸应力连续拉扯下逐渐成长,并使材料承载面积缩减,降低材料的承载能力。当裂纹成长到临界长度(critical length)时,材料净承载面积下的应力已超过材料的极限强度,此时的材料强制破坏也就无法避免了。
芬兰便携式X射线应力分析仪可快速、轻松分析齿轮、轴承、轧辊、曲轴、凸轮轴、压力容器管道以及其它一些零部件在热处理、机加工、焊接、喷丸、滚压等处理过程中产生的残余应力。
航空史上zui著名的军用飞机疲劳破坏事件,应该是1969年美国空军的F-111空中解体。
F-111结构中有个特殊的可变后掠机翼设计,这是因为固定式机翼在特定的飞行速度、高度、大气温度、大气密度、引擎推力……下,有zui佳的性能表现,一旦其中某个因素改变,性能就会降低。而可变后掠机翼则完全无此缺点,它就像是设计各种不同的机翼,来配合飞行中不同的飞行情况,例如:起降时把机翼完全向外伸展,增加机翼的升力,缩短起降距离;亚音速巡航时则把机翼部分后掠,减少机翼的阻力;超音速贴地飞行时则将机翼全角度后掠。
飞机结构的疲劳破坏zui常发生于几何形状不连续处,因此在维护延长服役年限的老飞机时,对一些几何面积变化较大的位置,如︰R角、铆钉孔边……,都得特别留意。比较麻烦的是有些结构件在原本的设计负载下,预期使用期间不会有疲劳破坏的顾虑,因此未留下检查进手空间,或是结构需大部拆解后才有办法检查,这些位置在延长服役期间如果未能检查,就会有相当的潜在飞行安全风险。
更多相关信息>>>
地址:北京市海淀区西三环北路72号世纪经贸大厦B座1808室(100048) 座机:010-88820040-1048 邮箱:[email protected]